TRADUCCION IN CONTEX
LA ELECTRICIDAD Y LOS CIRCUITOS ELÉCTRICOS
Yo les voy hablar acerca de la electricidad y los circuitos
eléctricos, los científicos han estudiado a la electricidad durante mucho tiempo de manera
que la palabra electricidad en realidad
proviene de la palabra ámbar ya que se
dieron cuenta que si este se frota podía generar una carga estática.
Alguna vez has ido a uno de esos toboganes de
plástico, y has salido con un montón de electricidad estática?
Y que es electricidad estática? Pues bien, aquí
tengo un guante de goma ya que no tengo un globo por lo que yo voy a frotar
este guante en mi cabeza una y otra y otra vez, realmente se puede escuchar la electricidad
estática y lo que hace en realidad es atraer los electrones de mi cabello y
poniéndolos en el guante de goma entonces en mi cabello hay menos electrones, y
tendrá carga positiva y el guante tendrá una carga negativa, pero esta no
va a ninguna parte ya que esta allí
estática a eso lo llamamos electricidad estática, y esta es la razón para que
el cabello del niño este hacia arriba ya que cada uno de ellos tienen carga
positiva porque está perdiendo electrones ya que cargas iguales se repelen, entonces
todos los cabellos están empujándose el uno al otro y es por eso que si tocara
un metal obtendría una descarga. Qué es eso? es simplemente el flujo de electrones
donde la eléctrica estática se queda en un solo lugar. Pero la verdadera
revolución se llevo a cabo cuando pudimos hacer circuitos, controlarlos y
utilizar esa energía, para hacer las cosas antes se utilizaba la energía
producida por vapor y cuando llegó la electricidad obtuvimos la revolución
digital, es probable que no se piense en ello todo el tiempo pero en realidad
toda la sociedad está a cargo de la electricidad, así que si buscas algo en
google no te das cuenta de que se está consumiendo energía en ese punto, porque
está haciendo una búsqueda y lo que hace google es ir a buscar en sus bases de
datos utilizando una gran cantidad de
energía y eso es uno de sus costos más grandes lo que trata de hacer es que sus
centros de datos sean tan eficientes como sea posible van a tratar de ponerlos
hacia áreas donde pueden obtener energía barata y disponible.
Entonces ¿cómo
funciona la electricidad? bueno esto no es una gran analogía pero si es una analogía
que funciona bastante bien y me quedo con ella, ¿cómo almacenamos energía? bien
una manera seria de la misma forma que almacenamos agua y esta se mueve en
torno al estanque. En Finlandia existe un estanque grande de agua y este tiene
debajo de la tierra una bomba y esta bomba bombea el agua hacia arriba y en la
parte superior el agua está asentada y para que el agua se asiente ahí tiene
una cierta cantidad de energía potencial, en una batería los electrones tienen
una cierta cantidad de energía potencial y a eso lo llamamos empuje o energía
almacenada o tensión. Bueno así que vamos a decir que quiero utilizar algo de
esa energía, digamos que abro el grifo de mi casa o tiro de la cadena del baño,
el flujo de agua a través de este circuito el agua fluye, así de similar es el flujo de electrones en
un circuito eléctrico, y si en un circuito existe una interrupción en el flujo
de corriente a esto le llamamos un circuito abierto y todo el sistema no
funcionaria y no avanzaría la electricidad por el circuito eléctrico.
Voy hablarles breve mente de circuitos eléctricos simples y les indicare como trabajan los
diagramas eléctricos, existen algunos símbolos que debemos saber el primero es el
de una batería, en una batería existe un lado positivo y un negativo el lado
derecho de la batería es el lado positivo, es el que tiene un pequeño bulto y al otro lado va a tener el
lado negativo, en el símbolo vamos a tener una parte superior más larga
positiva y una inferior más pequeña negativa. ¿Qué es un cable? un cable
simplemente va hacer una línea en un circuito eléctrico por lo que si existen
dos cables conectados en un circuito uno positivo y otro negativo se puede
decir que la electricidad puede fluir a través de ese punto. Lo que realmente
detiene el movimiento de la electricidad se llama resistencia y aquí están
algunos conceptos de resistencia, si puedes mirar las bandas de color en el
puedes saber cuánta resistencia tiene una resistencia lo que hace es impedir el
flujo de electrones o el paso de ellos, el símbolo de la resistencia se lo
representa con líneas hacia arriba y hacia abajo y conduce energía a ambos
lados.
A continuación tenemos lo que es una bombilla de luz. Para que pueda
funcionar en realidad la electricidad deberá fluir por la parte inferior de la
bombilla ya que en la parte inferior hay un poco de metal por lo cual va a fluir
hacia el lado de afuera y está conectado toda la trayectoria interna de la
bombilla a través de un filamento de alta resistencia. Y así desprende calor y luz,
dibujare la forma de una bombilla para mostrar que está conectado todo el
camino, hay que dibujar un bucle y luego se dibuja el bulbo alrededor del
exterior. A continuación tenemos lo que es un interruptor, un interruptor es
simplemente una apertura en el circuito.
Entonces, si es un interruptor cerrado
lo tendríamos como este. Y así sería un interruptor abierto. Esto sería un
interruptor cerrado y la electricidad fluiría por allí. Pero no podría fluir a
través de un interruptor abierto la electricidad no es capaz de moverse a
través del aire ya que es una cantidad
casi infinita de resistencia. Lo último que tenemos es un potenciómetro, un
potenciómetro funciona así. Tiene una flecha la cual indica que se puede variar
su valor de resistencia. Con el potenciómetro lo que podemos variar es la
cantidad de electricidad que se mueve a través de él. Si alguna vez has usado
un atenuador en su casa es como un
interruptor ¿Cómo funciona? estamos girando la cantidad de electricidad
que puede moverse a través del potenciómetro y así estamos dejando mas electricidad
o corriente.
Ahora lo que toca hacer es un poco de práctica y aquí tengo
algunas fotos. Aquí tenemos una batería simple, y un foco, voy a dibujar mis
circuitos al lado izquierdo tan solo dibujare
mi batería primero justo aquí es el extremo positivo. Ahora estoy dibujando una bombilla de luz y este tiende a
volver a la batería y entonces le ponemos un bulbo así y esto es lo que sería
un circuito eléctrico. Tengo una batería este sería el extremo positivo y el
otro el negativo la electricidad va afluir a través de este bucle y esto
produce la luz de la bombilla, este es un
circuito cerrado ya que va por todo el camino del bucle. Vamos a tener
una serie de luces. Dibujare mi batería, aquí luego se conecta los cables por lo que obtenemos tres conexiones así que voy a
ir de la parte superior, a la parte inferior y así sería mi primera conexión.
Si
tiene un interruptor cerrado habría flujo de corriente y se regresa a la
batería mi siguiente bucle tiene la mismos parámetros así que tiene un
interruptor que va a través de la bombilla y luego vuelve y tenemos mi tercer
bucle, existe un interruptor abierto y
tiene la bombilla de luz y luego vuelve a la batería ya si esto sería un
circuito en paralelo.
La electricidad puede ir todo el tiempo alrededor del
circuito, cuando tenemos un interruptor abierto la electricidad no puede ir a
través de un circuito abierto a esto le llamamos un cierta cantidad de
resistencia ¿así que la electricidad donde tendrá que ir? tiene que ir a través
de los otros lazos y las luces se van a encender porque la electricidad se va a
mover a través de él pero la electricidad no puede pasar por aquí así que no hay
que conectarle en ese punto, pero tenemos un procesador esto tiene electricidad
que sale de aquí este sería el extremo positivo y el otro lado seria el extremo
negativo a esto se le llama un
protoboard y así es la manera de conectarlos en el protoboard horizontalmente y
verticalmente. Tenemos nuestra batería aquí así que voy a ir del lado negativo
y luego al lado positivo. Tenemos una bombilla de luz que es un poco más grande,
se puede ver que eso va a través de la bombilla de luz y baja al siguiente
nivel donde tenemos un resistor y luego parece que lo siguiente que tenemos es un
potenciómetro esto va a ser un resistor
variable y luego va conectado a mi batería.
¿Cómo funciona este circuito?
Usted
puede variar la cantidad de resistencia y así este circuito entregara una variación de corriente y la luz de la bombilla va a tener
una luz brillante o tenue y esta resistencia es la encargada de disminuir la
cantidad de corriente eléctrica para que no tengamos demasiada electricidad
pasando por la bombilla de luz. Así que obtenemos otra vez que la electricidad
es simplemente el movimiento de electrones.
MOST INFORMATION ABOUT ELECTRICITY
What is electricity?
Electricity is a vital part of our lives. It gives us light, cools and
warms our homes, heats our water, and helps us cook our food. But do you really
understand how it’s made and how it’s measured?
Electricity exists all
around us in nature, from storms to sea life. Humans saw the potential to
harness the earth's energy to generate electricity. Now we rely on it every day.
In order to really understand what electricity is, take a look at the science
behind electricity at the atomic level.
Electricity figures
everywhere in our lives. Electricity lights up our homes, cooks our food,
powers our computers, television sets, and other electronic devices.
Electricity from batteries keeps our cars running and makes our flashlights
shine in the dark.
Here's something you can do
to see the importance of electricity. Take a walk through your school, house or
apartment and write down all the different appliances, devices and machines
that use electricity. You'll be amazed at how many things we use each and every
day that depend on electricity.
But what is electricity?
Where does it come from? How does it work? Before we understand all that, we
need to know a little bit about atoms and their structure.
All matter is made up of
atoms, and atoms are made up of smaller particles. The three main particles
making up an atom are the proton, the neutron and the electron.
Electrons spin around the
center, or nucleus, of atoms, in the same way the moon spins around the earth.
The nucleus is made up of neutrons and protons.
Electrons contain a
negative charge, protons a positive charge. Neutrons are neutral – they have
neither a positive nor a negative charge.
There are many different
kinds of atoms, one for each type of element. An atom is a single part that
makes up an element. There are 118 different known elements that make up every
thing! Some elements like oxygen we breathe are essential to life.
Each atom has a specific
number of electrons, protons and neutrons. But no matter how many particles an
atom has, the number of electrons usually needs to be the same as the number of
protons. If the numbers are the same, the atom is called balanced, and it is
very stable.
So, if an atom had six
protons, it should also have six electrons. The element with six protons and
six electrons is called carbon. Carbon is found in abundance in the sun, stars,
comets, atmospheres of most planets, and the food we eat. Coal is made of
carbon; so are diamonds.
Some kinds of atoms have
loosely attached electrons. An atom that loses electrons has more protons than
electrons and is positively charged. An atom that gains electrons has more negative
particles and is negatively charge. A "charged" atom is called an
"ion."
Electrons can be made to
move from one atom to another. When those electrons move between the atoms, a
current of electricity is created. The electrons move from one atom to another
in a "flow." One electron is attached and another electron is lost.
This chain is similar to
the fire fighter's bucket brigades in olden times. But instead of passing one
bucket from the start of the line of people to the other end, each person would
have a bucket of water to pour from one bucket to another. The result was a lot
of spilled water and not enough water to douse the fire. It is a situation
that's very similar to electricity passing along a wire and a circuit. The
charge is passed from atom to atom when electricity is "passed."
Scientists and engineers
have learned many ways to move electrons off of atoms. That means that when you
add up the electrons and protons, you would wind up with one more proton
instead of being balanced.
Since all atoms want to be
balanced, the atom that has been "unbalanced" will look for a free
electron to fill the place of the missing one. We say that this unbalanced atom
has a "positive charge" (+) because it has too many protons.
Since it got kicked off,
the free electron moves around waiting for an unbalanced atom to give it a
home. The free electron charge is negative, and has no proton to balance it
out, so we say that it has a "negative charge" (-).
So what do positive and
negative charges have to do with electricity?
Scientists and engineers
have found several ways to create large numbers of positive atoms and free
negative electrons. Since positive atoms want negative electrons so they can be
balanced, they have a strong attraction for the electrons. The electrons also
want to be part of a balanced atom, so they have a strong attraction to the
positive atoms. So, the positive attracts the negative to balance out.
The more positive atoms or
negative electrons you have, the stronger the attraction for the other. Since
we have both positive and negative charged groups attracted to each other, we
call the total attraction "charge."
Energy also can be measured
in joules. Joules sounds exactly like the word jewels, as in diamonds and
emeralds. A thousand joules is equal to a British thermal unit.
When electrons move among
the atoms of matter, a current of electricity is created. This is what happens
in a piece of wire. The electrons are passed from atom to atom, creating an
electrical current from one end to other, just like in the picture.
Electricity is conducted
through some things better than others do. Its resistance measures how well
something conducts electricity. Some things hold their electrons very tightly.
Electrons do not move through them very well. These things are called
insulators. Rubber, plastic, cloth, glass and dry air are good insulators and
have very high resistance.
Other materials have some
loosely held electrons, which move through them very easily. These are called
conductors. Most metals – like copper, aluminum or steel – are good conductors.
What is an Electric Circuit?
You might have
been wondering how electrons can continuously flow in a uniform direction
through wires without the benefit of these hypothetical electron Sources and
Destinations. In order for the Source-and-Destination scheme to work, both
would have to have an infinite capacity for electrons in order to sustain a
continuous flow! Using the marble-and-tube analogy, the marble source and
marble destination buckets would have to be infinitely large to contain enough
marble capacity for a "flow" of marbles to be sustained.
Each electron
advancing clockwise in this circuit pushes on the one in front of it, which
pushes on the one in front of it, and so on, and so on, just like a hula-hoop
filled with marbles. Now, we have the capability of supporting a continuous
flow of electrons indefinitely without the need for infinite electron supplies
and dumps. All we need to maintain this flow is a continuous means of
motivation for those electrons, which we'll address in the next section of this
chapter.
An important
principle to realize here is that it doesn't matter where the break occurs.
Any discontinuity in the circuit will prevent electron flow throughout the
entire circuit. Unless there is a continuous, unbroken loop of conductive
material for electrons to flow through, a sustained flow simply cannot be
maintained.
Electric
potential is the amount of electric potential energy per unit
of charge that would be possessed by a charged object if placed within an
electric field at a given location. The concept of potential is a
location-dependent quantity - it expresses the quantity of potential energy on
a per charge basis such that it is independent on the amount of charge actually
present on the object possessing the electric potential. Electric potential
difference is simply the difference in electric potential between two different
locations within an electric field.
To illustrate the concept
of electric potential difference and the nature of an electric circuit,
consider the following situation. Suppose that there are two metal plates
oriented parallel to each other and each being charged with an opposite type of
charge - one being positive and the other being negative. This arrangement of
charged plates would create an electric field in the region between the plates
that is directed away from the positive plate and towards the negative plate. A
positive test charge placed between the plates would move away from the
positive plate and towards the negative plate. This movement of a positive test
charge from the positive plate to the negative plate would occur without the
need of energy input in the form of work; it would occur naturally and thus
lower the potential energy of the charge. The positive plate would be the high
potential location and the negative plate would be the low potential location.
There would be a difference in electric potential between the two locations.
Now suppose that the two
oppositely charged plates are connected by a metal wire. What would happen? The
wire serves as a sort of charge pipe through which charge can flow. Over the
course of time, one could think of positive charges moving from the positive
plate through the charge pipe (wire) to the negative plate. That
is, positive charge would naturally move in the direction of the electric field
that had been created by the arrangement of the two oppositely charged plates.
As a positive charge leaves the upper plate, the plate would become less
positively charged as illustrated in the animation at the right. As a positive
charge reaches the negative plate, that plate would become less negatively
charged. Over the course of time, the amount of positive and negative charge on
the two plates would slowly diminish. Since the electric field depends upon the
amount of charge present on the object creating the electric field, the
electric field created by the two plates would gradually diminish in strength
over the course of time. Eventually, the electric field between the plates
would become so small that there would be no observable movement of charge
between the two plates. The plates would ultimately lose their charge and reach
the same electric potential. In the absence of an electric potential
difference, there will be no charge flow.
The above illustration
comes close to demonstrating the meaning of an electric circuit. However, to be
a true circuit, charges must continually flow through a complete loop,
returning to their original position and cycling through again. If there were a
means of moving positive charge from the negative plate back up onto the
positive plate, then the movement of positive charge downward through the
charge pipe (i.e., the wire) would occur continuously. In such a case, a
circuit or loop would be established.
A common lab activity that
illustrates the necessity of a complete loop utilizes a battery pack (a
collection of D cells), a light bulb, and some connecting wires. The activity
involves observing the effect of connecting and disconnecting a wire in a
simple arrangement of the battery pack, light bulbs and wires. When all
connections are made to the battery pack, the light bulb lights. In fact, the
lighting of the bulb occurs immediately after the final connection is made.
There is no perceivable time delay between when the last connection is made and
when the light bulb is perceived to light up.
The
fact that the light bulb lights and remains lit is evidence that charge is
flowing through the light bulb filament and that an electric circuit has
been established. A circuit is simply a closed loop through which charges can
continuously move. To demonstrate that charges are not only moving through the
light bulb filament but also through the wires connecting the battery pack and
the light bulb, a variation on the above activity is made. A compass is placed
beneath the wire at any location such that its needle is placed in alignment
with the wire. Once the final connection is made to the battery pack, the light
bulb lights and the compass needle deflects. The needle serves as a detector of
moving charges within the wire. When it deflects, charges are moving through
the wire. And if the wire is disconnected at the battery pack, the light bulb
is no longer lit and the compass needle returns to its original orientation.
When the light bulb lights, charge is moving through the electrochemical cells
of the battery, the wires and the light bulb filaments; the compass needle
detects the movement of this charge. It can be said that there is a current -
a flow of charge within the circuit.
The electric circuit
demonstrated by the combination of battery, light bulb and wires consists of
two distinct parts: the internal circuit and the external circuit. The part of
the circuit containing electrochemical cells of the battery is the internal
circuit. The part of the circuit where charge is moving outside the battery
pack through the wires and the light bulb is the external circuit. In Lesson 2,
we will focus on the movement of charge through the external circuit. In the next part
of Lesson 2 we will explore the requirements that must be met
in order to have charge flowing through the external circuit.
Req = R1 + R2 +
R3 + … (series connections)
1/Req = 1/R1 + 1/R2 + 1/R3 + … (parallel connections)
QUESTIONS AND
ANSWERS
1. What is electricity?
Electricity is the flow of electrons through a conductor.
2. What is static electricity?
Electricity is the flow of electrons through a conductor.
2. What is static electricity?
3. What is the purpose of developing an electric circuit?
The purpose of developing an electric circuit is control electricity for a specific purpose.
The purpose of developing an electric circuit is control electricity for a specific purpose.
4. What is the function of the wire into an electrical circuit?
The wire is the medium of transport of electricity and allows the flow of electrons to the circuit.
5. Where to find electricity?
Electricity is present in everything around us.
6. What is electrical resistance?
Electrical resistance is the opposition to the passage of electrons.
7. What is the filament of a light bulb?
The filament opf a ligth bulb is a piece of metal into the bulb.
8. What is a switch?
Swich is an element used to turn on or off a circuit.
9. How does a potentiometer work?
Potentiometer is a resistor that varies its value by manually adjusting the intermediate
pin element.
10. Why when you rub a balloon on your head generates static electricity?
Because there is an interaction between atoms of globe and hair, so one will lose
electrons and the other will lose, and this flow of electrons is called static electricity.
11. Why it is important to the voltage source in an electrical circuit?
The voltage source is important because it is responsible for feeding the circuit and
operating the items placed
The filament opf a ligth bulb is a piece of metal into the bulb.
8. What is a switch?
Swich is an element used to turn on or off a circuit.
9. How does a potentiometer work?
Potentiometer is a resistor that varies its value by manually adjusting the intermediate
pin element.
10. Why when you rub a balloon on your head generates static electricity?
Because there is an interaction between atoms of globe and hair, so one will lose
electrons and the other will lose, and this flow of electrons is called static electricity.
11. Why it is important to the voltage source in an electrical circuit?
The voltage source is important because it is responsible for feeding the circuit and
operating the items placed